Eastern Nile Power Toolkit - Quick guide

Eastern Nile Power Toolkit

Scope of the tool

The model is developed using excel database with macros and VB codes for the interface. The main objectives of EN Power Toolkit are to provide users with comprehensive profile information related to hydropower production and potentials in EN basin. The model is structured in four main sections: a Reservoir Database with a detailed and complete information about reservoirs/dams; Design Sheets with application of mathematical formulas; a Reservoir Simulation that calculates and displays reservoir variables, operations, plant capacity, releases etc. starting from reservoir database and flow data; and an economic and financial analysis.

It is one of the most complete toolkits, that is possible to use as a database for other models.

Main functions and structure

The model is organized in four sections, as can be observed in the homepage of the toolkit.

Figure 94: Homepage of the Eastern Nile Power toolkit

Reservoir Database

The section of the Reservoir Database provides a very detailed and comprehensive summary of the main characteristics of 26 reservoirs in the Nile Basin. In detail, the given information is the following:

- Location
- Reservoir Characteristics
- Dam Characteristics
- Power Plant Characteristics
- Turbine Characteristics
- Generator Characteristics
- Transformer Characteristics
- Power House
- Spillway Characteristics
- Headrace Tunnel

- Tailrace Tunnel
- Penstock
- Stage-Power Plant Energy Coefficient Relation
- Rainfall Evaporation Relation
- Average Monthly Reservoir Inflow
- Environmental Flow Requirements
- Tailwater Discharge Rating Curve
- Tailwater Elevation
- Project Cost Estimate
- Summary of Economic and Financial Analysis
- Hydrology
- Sediment Estimate
- Flood Analysis
- Reservoir Simulation Results
- Impacts on Environment

Figure 95: Reservoir Database section of Eastern Nile Power Toolkit

Design Sheets

Figure 96: Design sheets section in the Eastern Nile Poer Toolkit

The design sheets section contains many sheets for different structure design of the reservoirs:

- Bill of quantities
- Dam geometry
- Headloss computations
- Headrace channel
- Headrace Tunnel
- Intake structure
- Longitudinal Profile
- Penstock
- Plant Rating
- Reservoir Filling
- River Diversion
- Spillway
- Surge Tank
- Tailrace Tunnel
- Turbine Characteristics
- Unit rates

Design of Intake Structure and Intake Gate

Input Data:

	Design Variable	Default	Adjust Va	lue	Design	Units	
Type of Intake Structure		Slope S ₀	<90 Deg.	518		51.8	%
Select Design Discharge					400.00	m³/s	
Select No of Intake Structures		4			4	NA	
Chainage at start of Intake Struct	ure	0		0	0.00	m	
Chainage at End of Intake Structu		500	485	48.50	NA		
Sill Elevation at Intake		9820	982	m			
Intake Shape		ke Structure	160		16	m	
Height of Intake Structure			190	19	19	m	
Reseervoir Minimum Operation L	evel (MOL)			11000	1100	masl	
Reservoir Maximum Operation Le	evel (FSL)				10620	1062	masl
Select Allowable Design Velocity f	or Trash-Rack		0.5		50	0.5	m/s
Select Trash Rack Bar Spacing			5		54	5.4	cm
Design Degree of clogging Trash-F	Rack		50		500	50	%
Options for Intake Gate	Intake Gate Provided						
Select the Internal Diameter of the	ne Headrace Tunnel	10.64		122	12.20	m	
Select Inlet Transitional Length		3.48	416	41.6	41.60	m	
Reculter							

Figure 97: Design of an Intake structure in the Easter Nile power Toolkit

Reservoir Simulation

Figure 98: Reservoir simulation section in the Eastern Nile Poer Toolkit

This section lets simulate the functioning of a reservoir. The user can provide the operational characteristics of a reservoir, and the model will give the outcome for that operational set. The section contains also a huge quantity of flow data in the different rivers and reservoirs.

The different sheets for the simulation are the following:

- Turbine characteristics
- Turbine and Plant Rating
- Longitudinal Profile and Section
- Reservoir Characteristics
- Climate
- Reservoir Inflows
- Simulation of Reservoir Operations
- Power plant Des and Releases
- Spillway and Outletpipe

	Α	В	С	D	E	F	G	н	1	J	К	L	М	N	0	Р	Q	R	5	Т	U			
1	Reservoir Inflow Series														3,869	2 418	1 451	0.000	-1 260	-2 017				
2															P1-0.87	01-0.57	R1-0.37	\$1_0.0	T1-0.57	111-0.87				
2	Karadohi Maan manthlu straamflaw (m3/s)													L. L	1 1-0.02 max	Q1-0.52max	TT-0.52max	51-0.0	- orozmin or orozmin					
3	Variation	Tadobi Micen norticity sciencity (115/5)													CETR	$O(m^3/\epsilon)$	Elow (m ³ /r)	7 (MCN)						
4	10E4	Jan 84.10	Feb 20	Mar CC 20	Apr 47.10	May 22.40	Jun 75.90	JUI 1796.00	AUg	5ep	758.00	NOV	161 F0	rear 10E4	LSTR E72	Q (III /S) 04 10	HOW (1175)	J(Q+CSTR) 400.00		2 0.27	Flow (MCM)			
6	1954	113.00	85.60	64.00	93.90	80.10	101.40	1366.00	3003.00	1676.00	604.00	275.90	147.30	1934	573	69.30	69.30	-400.03		-0.37	182.62			
7	1955	86.00	70.20	44.60	93.90	36.00	43.20	1146.00	2567.00	1077.00	628.70	255.80	147.50		573	66.20	66.20	1/00 10		-0.13	174.45			
8	1957	109.60	83.40	292.50	201.20	49.10	87.50	717.30	2541.00	911 70	261.00	155.80	81.40		573	47.10	47.10	-2025.02		-0.21	124.12			
9	1958	74.80	69.60	49.10	52.10	35.70	85.70	1434.00	3182.00	1332.00	585.70	272.60	154.00		573	33.40	33.40	-2564 55		-0.94	88.02			
10	1959	113.90	79.80	51.80	47.30	42.60	45.90	1212.00	3169.00	1937.00	683.90	308.00	188.20		573	75.80	75.80	-3061.68		-0.44	199.75			
11	1960	132.60	81.60	62.80	37.20	60.70	50,70	1513.00	3021.00	1430.00	438.20	181.50	93.60		573	1786.00	1786.00	-1848.61		0.92	4706.47			
12	1961	97.30	75.70	70.80	110.80	68.30	70.30	1651.00	2735.00	1620.00	792.80	361.70	255.10		649	3673.00	3673.00	1175.79		1.30	9679.09			
13	1962	119.50	73.60	50.80	31.10	54.10	73.60	672.40	2472.00	1394.00	541.30	193.30	123.20		649	2100.00	2100.00	2627.19		1.75	5533.92			
14	1963	98.80	83.70	81.40	74.90	156.00	98.60	946.40	2981.00	1230.00	377.50	259.40	179.50		573	758.90	758.90	2813.16		1.52	1999.85			
15	1964	108.00	77.30	21.90	56.70	41.60	117.40	2352.00	3579.00	1891.00	725.20	338.40	232.80		573	275.90	275.90	2516.13		0.56	727.05			
16	1965	142.50	80.90	62.00	99.90	45.10	44.30	456.50	2149.00	679.20	388.10	222.40	131.00		573	161.50	161.50	2104.70		0.59	425.58			
17	1966	91.60	85.20	56.90	52.10	39.40	62.90	536.60	2158.00	1177.00	253.20	168.70	100.70	1955	573	113.90	113.90	1645.67		0.53	300.15			
18	1967	83.70	59.70	73.70	106.20	144.30	59.80	1298.00	2842.00	1390.00	713.80	317.90	172.80		573	85.60	85.60	1158.34		0.78	225.57			
19	1968	100.90	73.20	55.60	78.60	62.20	177.70	1507.00	2155.00	881.00	435.40	178.40	104.20		573	64.00	64.00	649.41		-0.25	168.65			
20	1969	95.40	93.70	234.50	65.20	85.80	108.90	1271.00	3353.00	1779.00	379.50	175.50	111.50		573	93.90	93.90	170.38		0.33	247.45			
21	1970	92.50	94.60	97.90	75.40	42.60	52.40	1019.00	3068.00	1541.00	500.40	167.40	103.20		573	89.10	89.10	-313.45		0.19	234.80			
22	1971	81.50	71.00	55.10	56.90	59.70	144.70	1063.00	3098.00	1099.00	412.60	184.30	99.50		573	101.40	101.40	-784.98		-0.14	267.21			
23	1972	81.90	70.90	52.30	82.60	54.50	87.40	741.20	1800.00	474.90	207.70	131.10	77.00		573	1366.00	1366.00	8.09		0.18	3599.68			
24	1973	60.00	34.20	31.30	33.80	54.80	80.30	929.60	3003.00	1091.00	380.00	161.20	90.10		649	3003.00	3003.00	2362.49		0.27	7913.51			
25	1974	72.30	52.00	48.00	49.70	85.00	109.50	1736.00	2663.00	1092.00	376.90	183.70	110.80		649	1676.00	1676.00	3389.89		0.77	4416.60			
26	1975	79.70	79.60	54.70	49.70	43.10	159.40	1286.00	3331.00	2437.00	700.80	301.60	211.10		573	604.00	604.00	3420.96		0.66	1591.66			
27	1976	150.00	89.70	87.50	84.10	87.60	83.50	862.00	2827.00	1361.00	245.60	229.20	132.70		573	255.80	255.80	3103.83		0.31	674.08			
28	1977	88.00	86.20	79.90	51.20	43.20	68.10	1250.00	2581.00	1691.00	474.50	430.00	140.60		573	147.30	147.30	2678.20		0.30	388.16			
29	1978	101.50	72.40	49.80	44.80	40.70	69.20	1251.00	2427.00	1234.00	541.40	193.60	116.30	1956	573	86.00	86.00	2191.27		-0.32	226.63			
30	1979	95.60	81.20	45.80	41.80	61.10	91.90	838.40	22/4.00	842.50	293.30	145.10	84.20		573	/0.20	/0.20	1688.54		-0.09	184.99			
31	1980	63.70	55.60	48.80	63.20	43.30	76.10	759.70	2527.00	1908.00	556.00	248.90	137.80		573	44.60	44.60	1160.21		-0.59	117.53			
32	1981	94.90	136.20	2/1.80	117.10	80.70	53.90	1643.00	2504.00	1356.00	3/1.90	180.90	109.90		573	94.30	94.30	681.58		0.34	248.50			
33	1982	99.20	80.40	67.90	/1.00	68.50	66.90	421.60	2268.00	890.20	407.90	163.20	92.10		573	36.90	36.90	145.55		-0.87	97.24			
34	1983	72.30	59.70	59.50	82.00	127.30	120.00	432.70	2512.00	1067.00	376.80	179.50	98.40		573	43.20	43.20	-384.18		-0.83	113.84			
35	1984	70.40	50.80	39.60	38.60	61.00	186.40	824.30	1705.00	593.90	210.40	134.00	84.80		5/3	1146.00	1146.00	188.89		-0.20	3019.94			
30	1985	96.90	27.60	51.70	110.70	170.40	85.70 70.70	1465.00	2519.00	1041.00	417.90	191.10	104.40		649	2567.00	2567.00	2107.29		-0.40	0764.56			
37	1980	75.60	62.70	116.10	109.70	170.40	101.00	1405.00	2441.00	1385.00	424.30	162.70	104.40		649	1077.00	629.70	2030.69		-0.63	2838.11			
20	1987	59.50	56.20	25.70	42.10	21 70	52.40	1695.00	2074.00	1045.00	250.50	409.20	39.70		573	038.70	038.70	2001.40		0.85	697.70			
39	1900	122.60	02.00	90.20	42.10	57.70	72.10	762.10	3974.00	1072.00	277.90	406.20	299.90		5/3	201.00	201.00	1050 50		0.38	272.02			
40	1989	152.00	93.00	69.20	125.50	57.20	75.10	702.10	2140.00	1073.00	327.80	130.00	119.50		573	141.90	141.90	1000.00		0.19	575.95			
	$\langle \rangle$	••• Sh 1	15 Turbine	& Plant F	Rating	Sh 3 Long	Profile &	Section	Sh 4 Re	servoir Ch	naracterist	ics Sh	11 Climate	e Sh 12	Reservoir	Inflows	Sh 16 Sim c	f Res. Oper	ation	SETS S	h 7 Power P			

Figure 99: Flow data in Eastern Nile Power Toolkit

Economic and Financial Analysis

The section about Economy and Finance gives the possibility to evaluate the costs and benefits of the structures and to perform an analysis.

The input of the analysis are the costs of the different components, given the proper bills of quantities, costing rates, cost methodology and cost breakdown of each specific component. Also the benefits given by energy production are considered.

The output is an analysis of the balance between costs and benefits for each year, with the evaluation of economic and financial parameters such as payback period, return of investment and net present value.

	А	В	с	D		Е	F		G	н і	J.	К	L	м	N O P	Q	R	
7					PR	OJECT COS	STS						PROJECT	BENEFITS			ETHIOPIA	
3																		
)					08	M												
)															Value of	PV	B/C	1
				Investn	nent 0.8	8% of investn	n.	P۱	/ of	Energy	Net	Value of		Net	Gener.	of Tota	I 1.44	1
L										cost at	Gener.	Gener.		Generation				
		Indicative		Project	0.2	2	Total Costs	Тс	tal	Mandaya	Delivered	4		Delivered		Benefit	.s	1
2							per yr.	Co	osts									
		Indicative			US	sc/kWh		re	r. Mar	hc USc/kWh	Mandaya	1		ICS	ICS		NPV	
3		Calendar																
		Year	Project	mill. U	ISD mil	II. USD	mill. USD	mi	II. U	SI Beko-Abo	GWh	mill. USD		GWh	mill. USD	mill. U	SI mill. USD	
1			year															
5		Sum:		3125.07	7894		1990	5115	2133	3.75		26372			0	3069	936.7	
5										System							l	
7		2012	0	50.2			50.2		45.	6 3.28	0	0			0 0	0	-45.6	
3		2013	1	122.3			122.3	4	100.	7	0	0			0 0	0	-100.6	ŀ
)		2014	2	382.5			382.5		285.	6	0	0			0 0	0	-285.6	ŀ
)		2015	3	481.9			481.9		326.	4	0	0			0 0	0	-326.4	ŀ
L		2016	4	597.6			597.6		367.	2	0	0			0 0	0	-367.1	Ľ
2		2017	5	585.9			585.9		326.	6	0	0	1		0 0	0	-326.6	ľ
3		2018	6	478.0	30		508.0		256.	9	2991.9	161.7922	1		0 0	81.7	-1/5.2	1
1		2019	7	426.6	36		462.6	4	212.	2	5983.8	323.5844			0.0	148.2	-64	Ŀ
2		2020	8		48.		48.1	4	20.	0	11968	647.1687			0.0	269	248.9	1
2		2021	9		48.		48.1		18.	2	11968	647.1687			0.0	244	225.8	ľ
1		2022	10		48.	.1	48.1		16.	5	11968	647.1687			0.0	221.4	204.9	C
<	> •	•• Sh 28 Bi	ill of Quan	tities S	h 29 Cost I	Breakdown	Cost BreakdownK	Cost Summa	n/K	Assumed TariffK	Disursemen	t scheduleK	Economic	EinancialA	Sh 30 Economic Analysis	Sh 31 Fina	ncial Analysis	

Figure 100: Economic analysis of a reservoir in the Eastern Nile Power Toolkit